
Peter Willendrup, DTU Physics and ESS DMSC

Speeding up legacy:  
GPU-accelerating the McStas instrument simulation code using OpenACC.

Peter Kjær Willendrup1,2, Emmanuel Farhi3, Mads Bertelsen2, Torben Roland Nielsen2, Tobias Weber4, Erik Bergbäck Knudsen1,5,
Jakob Garde6 , Tobias Weber4

 
1Technical University of Denmark / Danmarks Tekniske Universitet (Department of Physics) 2European Spallation Source ERIC (Data
Management and Software Center) , 3Synchrotron SOLEIL, 4Institut Laue Langevin, 5Copenhagen Atomics, 6Technical University of
Denmark / Danmarks Tekniske Universitet (Department of Electrical Engineering)

1

n
McStas

vs

n
McStas

Peter Willendrup, DTU Physics and ESS DMSC

Agenda
• What is McStas in two slides

• Why and how was McStas ported to GPU’s

• How well (fast) does it work? 

• HOWTO steps:  
Porting an instrument / component

• Conclusions

2

n
McStas

n
McStas

Peter Willendrup, DTU Physics and ESS DMSC

McStas Introduction
• Flexible, general simulation utility for neutron scattering experiments.

• Original design for Monte carlo Simulation of triple axis spectrometers

• Developed at DTU Physics, ILL, PSI, Uni CPH, ESS DMSC

• V. 1.0 by K Nielsen & K Lefmann (1998) RISØ 
(work initiated in 1997, 25 year project anniversary, 2023 anniversary release)

• Small, dedicated team, many contributions from users, students

• Similar for X-rays, see http://www.mcxtrace.org - we share 
code base, tools and infrastructure.

3

 GNU GPL license

Open Source

mcstas-users@mcstas.org mailinglistProject website at

http://www.mcstas.org

v. 1.0 1998 
v. 3.2 2023 n

McStas

http://www.mcxtrace.org
mailto:neutron-mc@risoe.dk
http://www.mcstas.org/

n
McStas

Peter Willendrup, DTU Physics and ESS DMSC

• Portable 
 
 
 

• CPU/MPI/GPU

• ~ 250 comps

• ~ 250 instrs

• D. S. L.  
 

•  

• C-code

• Binary prog

Neutron optics include things like:

• Mirrors and guides

• Collimators and slits

• Diskchoppers, Fermi choppers 
 and velocity selectors

• Monochromators/Analysers

 
Components of neutron instruments

4
In McStas the moderator is the “source”

The sample:

Crystalline, powders, liquids, micelles, 
structures to image, inelastic features like 
phonons…

Detectors are “monitors” in McStas. Mostly they act  
as “perfect probes” and can be positioned thought 
your instrument 
gathering 1D/2D/ 
event lists…

Code generation

omain
pecific

anguage

Software

facts

n
McStas

Peter Willendrup, DTU Physics and ESS DMSC

Main events on timeline of road toward GPU

5

2017: E. Farhi  
initial cogen  
modernisation

Fall 2018 onwards:  
J. Garde further cogen
modernisation and  
restructuring

October 2019: 
Participation at Espoo Hackathon.  
First meaningful data extracted.  
Work on cogen and realising  
we need another RNG.

October 2019 onwards:  
J. Garde & P. Willendrup:  
New RNG, test system, multiple  
functional instruments. 

November- 
December 2019: 
First good look at  
benchmarks and  
overview of what  
needs doing for first 
release with limited 
GPU support.

mentor: Vishal Metha 
 
hackathon org.: 
Guido Juckeland

mentor: Christian Hundt 
 
hackathon org.: 
Sebastian Von Alfthan

January 2020: 
One-week local 
hackathon @ DTU

with McCode & RAMP teams

February 2020: 
First release  
McStas 3.0beta 
with GPU  
support was 
released 
to the public

March 2018: Participation at
Dresden Hackathon. 1st “null”
instrument prototype runs.

n
McStas

2020 1st Corona lockdown 
P. Willendrup & E. Knudsen 
continue work on comp and 
cogen

November 2020 
Virtual Hackathon,  
setting release scope

December 15th 2020 
McStas 3.0 release! 
 
November 24th, 2021 
McStas 3.1 release! 

 
McStas 3.2  
release 
is expected in  
the fall of 2022 

Peter Willendrup, DTU Physics and ESS DMSC

n
McStas

Peter Willendrup, DTU Physics and ESS DMSC

• LOTS of slowish processor-cores 
(aka. massively parallel”)

• BUT: Limited bandwidth in CPU / GPU exchange 
(PCIe…) 

• Main HW providers today are , ,

• Software-frameworks

• CUDA (NVIDIA-specific)

• Accessible in C, ++, Fortran, shared library

• OpenCL (hw-agnostic)

• C-like programming language with own syntax

• OpenACC (almost NVIDIA-specific, but extending

• #pragma pre-compiler mechanism, accessible in C, ++, Fortran

• “High-level, compiler-driven CUDA”

• OpenMP is picking up GPU-support…

• Intel oneAPI

• Claims to be a unified approach to CPU/GPU/MPI/… I didn’t get around to really try it yet… ;-)

GPU-computing “101”

6

GPU support in McStas, so far
is effectively NVIDIA-specific!

Why consider GPU’s for McStas in the first place?

• GPU’s have great potential for speedups within

“intrinsically parallel” problems

• McStas is already “embarrassingly parallel”: every
neutron is independent

• TCO or “FLOP / energy” can be greener / cheeper
than for CPU’s

Why OpenACC?

• Was retrofitted elegantly to our “old” sw framework”

• Identical code runs now on both CPU and GPU

Foreseen use-case?

• Pre- or in-experiment help tool needs to be “as fast
as the experiment”. (Modern day spallation sources
with event-mode and sample sim. are a challenge.)

n
McStas

Peter Willendrup, DTU Physics and ESS DMSC

Anatomy of a McStas GPU run (*)
• Init, geometry, files etc. read on CPU

• MPI if needed

• Memory-structures

• Built on CPU

• Marked for transfer to GPU (#pragma acc declare create etc.)

• Initialised and synced across

• Trace-loop is a #pragma acc parallel loop

• Calculation performed entirely on GPU

• Component structs (incl. e.g. monitor-arrays) synced across

• Finally and Save runs on CPU

• MPI merge if needed

7

No printfs etc. available 
on GPU, automatically 
suppressed by #defines

The GPU user experience is almost identical to that of running on CPU!

n
McStas

8

Maximum performance indication on NVIDIA A100 (Ampere)

Idealised instrument 
with source and monitor 
only - i.e. without any 
use of the ABSORB 
macro. 
 
(Good indication 
of maximal speedup  
achievable.)

Peter Willendrup, DTU Physics and ESS DMSC

~600

Earlier dataset from V100 ~600

Maximal speedup: ~1000

Execution speedups  
renormalised to wall- 
clock of single-core 
gcc standard simulation,

A100 run is ~ 
1000 times faster 
than a single- 
core CPU run

vs

vs

Older “Gamer-
GPU” e.g. GeForce 1030 is

~  
0.1 V100 or 0.05 A100

n
McStas

9

Real-world problem 1: BNL_H8 TAS models with / without SPLIT: 
factor of 28-172 speedup 
(SPLITs makes the instrument less ‘intrinsically’ parallel)

Peter Willendrup, DTU Physics and ESS DMSC

vs

n
McStas

10

Real-world problem 2: PSI_DMC diff models with / without SPLIT: 
factor of 21-74 speedup 

Peter Willendrup, DTU Physics and ESS DMSC

vs

n
McStas

11

Real-world problems 3:

Peter Willendrup, DTU Physics and ESS DMSC

“sample-only” sims often ~ factor of 50 
“full instruments” ~ factor of 20-30-60, but 160 seen 
“optics-only” surprisingly ~ factor of 5 ??

Main message: 
Here is room for more, optimisation ongoing!!! 
* handle splits better 
* investigate “key” components 
* structural code-changes (comp USERVARS etc)

12

Team: Garrett E. Granroth, Fahima Islam, Thomas Huegle, Jiao Lin, Peter Willendrup

• Overall project goal: Deliver realistic instrument
simulations to users on the same time scale as a
neutron scattering measurement.

• Currently the most time is spent simulating up to the
sample (The Incident beam)

• Beam line simulations for SNAP, GPSANS, and ARCS
have been updated for McStas 3.X. (They can now
run on NVIDIA gpus as well as cpus.)

• The GPSANS update was straight forward as it
leveraged updated McStas components

• The SNAP, SEQUOIA and ARCS simulations have
custom components so they were more effort.

• The openacc implementation in McStas 3.X
streamlined the development process.

• Simulations run more than 100x faster on an NVIDIA
A100 than a cpu.

• With all 8 gpus on an NVIDIA A100, simulations can
run much faster than the duration of a single neutron
scattering measurement

Details of Simulation Speed increase

Incident Beam Simulations with GPUS (to be presented in full at JCNS workshop)

Instrument Time on 1
CPU (s)

Time on 1
GPU (s)

Speed up (x)

ARCS 103920 58 1791
GPSANS 3380 16 211
SNAP 20592 60 343

Beam monitor from
ARCS simulation
shows no

statistically
significant difference
between cpu and
gpu simulations

Slide from Garrett Granroth, ORNL/SNS

First user applications of McStas on GPU are coming in:

n
McStas

13

Porting an instrument - HOWTO 
see also https://github.com/McStasMcXtrace/McCode/wiki/HOWTO%3A-Modifying-a-McStas-2-instrument-for-use-under-McStas-3

* Particle “flags” must go in USERVARS (automatically initialised to 0 in 3.x) 
 
* DECLARE-vars used within instrument TRACE need #pragma’s 
 
* Monitor_nD user-variables-identifiers are string type user1=flag user1=“flag”

If you can’t make it work, please write mcstas-users@mcstas.org or define a GitHub issue

https://github.com/McStasMcXtrace/McCode/wiki/HOWTO%3A-Modifying-a-McStas-2-instrument-for-use-under-McStas-3
mailto:mcstas-users@mcstas.org
https://github.com/McStasMcXtrace/McCode/issues

n
McStas

14

Porting a component - HOWTO 
see also https://github.com/McStasMcXtrace/McCode/wiki/HOWTO%3A-Modifying-a-McStas-2-component-for-use-under-McStas-3

1. DEFINITION PARAMETERS is not supported. Vars must become SETTING PARAMETERS, specifically:

• Simply move string vars

• Lists/array-pointers need the vector type e.g. vector a={1,2,3,4} or b=c where c is an instrument-level 
array/pointers. (Base type in vector is a double.)

2. DECLARE must have “simple” content, i.e. vars without initialisation each alone on a line: 
 
 
 
 
 
- and initialise them in INITIALIZE

3. SHARE-based TRACE-functions that pick random numbers MUST include the “particle” in the footprint:

• double my_function(double a, int b, double*c, _class_particle* _particle);

• this forwards the RNG state (carried with each particle)

4. DECLARE-parameters should not be used to store particle-derived information...

• Use a local TRACE-scope var instead

• Ensure this by checking that CPU and GPU runs are identical if run with the same seed.

5. If you are using external libs, e.g. GSL or function pointers, your code can not run on GPU.

• You may put the NOACC keyword in the component header, this forces execution on CPU only.  
 

If you can’t make it work, please write mcstas-users@mcstas.org or define a GitHub issue

https://github.com/McStasMcXtrace/McCode/wiki/HOWTO%3A-Modifying-a-McStas-2-component-for-use-under-McStas-3
mailto:mcstas-users@mcstas.org
https://github.com/McStasMcXtrace/McCode/issues

n
McStas

15

All instruments (>250) distributed with McStas 3.x can utilise NVIDIA GPUs. 
- please use as inspiration!! 

1. You need an NVIDIA card in your machine

2. Use Linux ;-) (or WSL 2 on windows, including relevant driver and kernel…)

3. Install the NVIDIA hpc sdk https://developer.nvidia.com/nvidia-hpc-sdk-downloads

4. Your McStas 3.x is preconfigured with reasonable defaults if the nvc compiler is on the PATH, i.e.

A. Single-core CPU compilation by 
mcrun -c Instrument.instr  

B. Enable MPI by  
mcrun -c --mpi=8 Instrument.instr 

C. Enable GPU by 
mcrun -c --openacc Instrument.instr 

D. Combined MPI and GPU run can be achieved via

mcrun -c --mpi=8 --openacc Instrument.instr 

Output data should look “as usual”, an instrument compiled for GPU can (currently) not output mcdisplay graphics.

… Or use similar settings from your mcgui.

“Do almost as usual”.

If you can’t make it work, please write mcstas-users@mcstas.org or define a GitHub issue

https://developer.nvidia.com/nvidia-hpc-sdk-downloads
mailto:mcstas-users@mcstas.org
https://github.com/McStasMcXtrace/McCode/issues

Peter Willendrup, DTU Physics and ESS DMSC

Conclusions
• It really does work nicely! 

• Code changes much less invasive than envisioned!

• Use is transparent, fully integrated in mcgui / mcrun utils (on Linux or through WSL) 

• It often gives a speedup of 1-2 orders of magnitude over 1 cpu core 

• Used for pre / in experiment simulations at ORNL, runs at least “real-time” wrt. experiments

• Most things work already 
(we have workarounds or solutions in the pipe for the rest) 

• McStas 3.1 is as of yet “fully ported” to GPU but not fully “optimised” performance-wise, we will try to go
to another Hackathon 

• Basic compilation with GCC 10 offloading support achieved May 2021  
- but produces 0 on detectors… ;-) 
- hope for better GCC support and non-NVIDIA cards in 1-2 years

16

n
McStas

Peter Willendrup, DTU Physics and ESS DMSC

The team, Nvidia mentors and Hackathon hosts :-)

17

Jakob

Peter Mads Erik

To
bi

as

To
rb

en

G
in

o
- 

(R
AM

P)

Emmanuel

Vishal Metha

Christian Hundt

Alexey Romanenko

Guido Juckeland

Sebastian von Alfthan

Peter Willendrup, DTU Physics and ESS DMSC

Datacenters:

•HZDR Dresden

•CSC Espoo

•DTU Lyngby

•DTU RISØ

•ESS DMSC

n
McStas

Peter Willendrup, DTU Physics and ESS DMSC

— Other McStas contributions —

18

— Backup slides follow —

n
McStas

Peter Willendrup, DTU Physics and ESS DMSC

McStas 2.x -> McStas 3.x main differences
• Rewritten / streamlined simplified code-generator with

• Much less generated code

• improved compile time and compiler optimizations, esp. for large instrs

• Much less invasive use of #define

• Component sections -> functions rather than #define / #undef

• Much less global variables, instrument, component and neutron reworked to be

structures

• Use of #pragma acc … in lots of places (put in place by cogen where possible)

• New random number generator implemented

• We couldn’t easily port our legacy Mersenne Twister

• Experimenting with curand showed huge overhead for our relative small number of

random numbers  
(we have hundreds or thousands of random numbers, not billions)

• Complete change to dynamic monitor-arrays

19

Advantage 
of 3.0 also on 
CPU

Peter Willendrup, DTU Physics and ESS DMSC

Pragmas in play…

• Data need to be transferred to the GPU, we use

• #pragma acc declare create(VAR) // put at VAR declaration 

double VAR;

• #pragma acc update device(VAR) // after assignment

• Main particle loop has a

• #pragma acc parallel loop 

for (unsigned long pidx=0 ; pidx < innerloop ; pidx++) { 

• Any function to be evaluated on GPU needs. Put in place by code-generator whenever we can…

• #pragma acc routine // on fct. prototype or on actual function def. 

_class_Source_div *class_Source_div_trace(_class_Source_div *_comp , _class_particle *_particle) {

• If writing to VAR is necessary, this can be done atomically using e.g.

• #pragma acc atomic 

VAR = VAR + 1; // ++ operators etc. is too complex

• We pull data back using this mechanism

• #pragma acc update host(VAR)

20

We also use 
* openacc.h e.g. for “attaching device pointers" 
* accelmath.h for a math.h GPU replacement 

+ some self-made replacements for e.g. string
handling that are (otherwise) not available for
GPU.

Peter Willendrup, DTU Physics and ESS DMSC

Things that couldn’t be done

21

• Function pointers / abstract functions are not available on GPU

• Solutions:

• Code around if possible (e.g. integration routine pr. specific function to be
integrated…)

• Use mechanism to do this calculation CPU-side before/after/at cost of transfers 

• Variadic functions are not available on GPU

• Special case: printf() and friends 

• Anonymous structs as comp pars are not available on GPU

• Declare struct explicitly

• External libs generally can not be used on GPU  
(“#pragma….” hard to add on 3rd party codes)

• Handle in INIT / FINALLY (MCPL)

• “NOACC” (GSL etc.)

